Solved Examples: Circles



Samuel Dominic Chukwuemeka (SamDom For Peace) Formulas:
(1.) Geometry Formulas
(2.) Mensuration Formulas

For ACT Students
The ACT is a timed exam...60 questions for 60 minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for any wrong answer.

For JAMB and CMAT Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.

For NSC Students
For the Questions:
Any space included in a number indicates a comma used to separate digits...separating multiples of three digits from behind.
Any comma included in a number indicates a decimal point.
For the Solutions:
Decimals are used appropriately rather than commas
Commas are used to separate digits appropriately.

Solve all questions
Give reasons accordingly.
Show all work
(1.) ACT A certain circle has an area of π square inches.
How many inches long is its radius?

$ A.\:\: \dfrac{1}{2} \\[5ex] B.\:\: 1 \\[3ex] C.\:\: 2 \\[3ex] D.\:\: \dfrac{\pi}{2} \\[5ex] E.\:\: \pi \\[3ex] $

$ A = \pi \\[3ex] r = ? \\[3ex] r = \dfrac{\sqrt{A\pi}}{\pi} \\[5ex] = \dfrac{\sqrt{\pi * \pi}}{\pi} \\[5ex] = \dfrac{\sqrt{\pi^2}}{\pi} \\[5ex] = \dfrac{\pi}{\pi} \\[5ex] = 1\:\:inch $
(2.) Draw a circle on a piece of paper as accurately as possible whose circumference is π inches.
What is the​ diameter?


$ C = \pi \\[3ex] d = ? \\[3ex] d = \dfrac{C}{\pi} \\[5ex] d = \dfrac{\pi}{\pi} \\[5ex] d = 1\;inch $
(3.) ACT What is the ratio of the diameter to the circumference of a circle?

$ F.\:\: \dfrac{1}{2\pi} \\[5ex] G.\:\: \dfrac{1}{\pi} \\[5ex] H.\:\: \dfrac{\pi}{2} \\[5ex] J.\:\: \pi \\[3ex] K.\:\: 2\pi \\[3ex] $

$ d = 2r \\[3ex] C = 2\pi r \\[3ex] \dfrac{d}{C} = \dfrac{2r}{2\pi r} \\[5ex] \dfrac{d}{C} = \dfrac{1}{\pi} $
(4.) MEHA The coordinates of the centre of the circle $(x - 3)^2 + (y - 5)^2 = 4$ are

$ A.\;\; (3, 5) \\[3ex] B.\;\; (-3, 5) \\[3ex] C.\;\; (3, -5) \\[3ex] D.\;\; (-3, -5) \\[3ex] $

The equation of a circle that is in the standard $(x, y)$ coordinate plane with center $(h, k)$ is:

$ (x - h)^2 + (y - k)^2 = r^2 \\[3ex] Compare:\;\; (x - 3)^2 + (y - 5)^2 = 4 \\[3ex] -h = -3 \\[3ex] h = 3 \\[3ex] -k = -5 \\[3ex] k = 5 \\[3ex] Center:\;\; (h, k) = (3, 5) $
(5.) Complete the table​ below, which concerns circles.
(Type exact​ answers, using π as​ needed.)

Radius (cm) Diameter (cm) Circumference (cm) Area (cm²)
17 ... ... ...
... 28 ... ...
... ... ... 169π
... ... 32π ...


Let:
radius = r
diameter = d
circumference = C
area = A

Radius (cm) Diameter (cm) Circumference (cm) Area (cm²)
17 $ d = 2r \\[3ex] d = 2(17) \\[3ex] d = 34 $ $ C = 2\pi r \\[3ex] C = 2 * \pi * 17 \\[3ex] C = 34\pi $ $ A = \pi r^2 \\[3ex] A = \pi * (17)^2 \\[3ex] A = 289\pi $
$ r = \dfrac{d}{2} \\[5ex] r = \dfrac{28}{2} \\[5ex] r = 14 $ 28 $ C = \pi d \\[3ex] C = \pi * 28 \\[3ex] C = 28\pi $ $ A = \dfrac{\pi d^2}{4} \\[5ex] A = \dfrac{\pi (28)^2}{4} \\[5ex] A = 196\pi $
$ r = \sqrt{\dfrac{A}{\pi}} \\[5ex] r = \sqrt{\dfrac{169\pi}{\pi}} \\[5ex] r = \sqrt{169} \\[3ex] r = 13 $ $ d = \sqrt{\dfrac{4A}{\pi}} \\[5ex] d = \sqrt{\dfrac{4 * 169\pi}{\pi}} \\[5ex] d = \sqrt{4 * 169} \\[3ex] d = \sqrt{4} * \sqrt{169} \\[3ex] d = 2 * 13 \\[3ex] d = 26 $ $ C = 2\sqrt{A\pi} \\[3ex] C = 2\sqrt{169\pi * \pi} \\[3ex] C = 2\sqrt{169 * \pi^2} \\[3ex] C = 2 * \sqrt{169} * \sqrt{\pi^2} \\[3ex] C = 2 * 13 * \pi \\[3ex] C = 26\pi $ 169π
$ r = \dfrac{C}{2\pi} \\[5ex] r = \dfrac{32\pi}{2\pi} \\[5ex] r = 16 $ $ d = \dfrac{C}{\pi} \\[5ex] d = \dfrac{32\pi}{\pi} \\[5ex] d = 32 $ 32π $ A = \dfrac{C^2}{4\pi} \\[5ex] A = \dfrac{(32\pi)^2}{4\pi} \\[5ex] A = \dfrac{32 \cdot 32 \cdot \pi \cdot \pi}{4 \cdot \pi} \\[5ex] A = 8 \codt 32 \cdot \pi \\[3ex] A = 256\pi $
(6.) A 4​–meter wire is wrapped around a circular region.
If the wire fits​ exactly, what is the area of the​ region?
(Type an exact answer in terms of π)


Let:
circumference = C
area = A

$ C = 4\;m \\[3ex] A = \dfrac{C^2}{4\pi} \\[5ex] A = \dfrac{4^2}{4\pi} \\[5ex] A = \dfrac{4}{\pi}\;m^2 $
(7.) ACT In the standard (x, y) coordinate plane, a circle with its center at (8, 5) and a radius of 9 coordinate units has which of the following equations?

$ F.\;\; (x - 8)^2 + (y - 5)^2 = 81 \\[3ex] G.\;\; (x - 8)^2 + (y - 5)^2 = 9 \\[3ex] H.\;\; (x + 8)^2 + (y + 5)^2 = 81 \\[3ex] J.\;\; (x + 8)^2 + (y + 5)^2 = 9 \\[3ex] K.\;\; (x + 5)^2 + (y + 8)^2 = 81 \\[3ex] $

The equation of a circle that is in the standard $(x, y)$ coordinate plane with center $(h, k)$ is:

$ (x - h)^2 + (y - k)^2 = r^2 \\[3ex] Center:\;\; (h, k) = (8, 5) \\[3ex] h = 8 \\[3ex] k = 5 \\[3ex] r = 9 \\[3ex] \implies \\[3ex] (x - 8)^2 + (y - 5)^2 = 9^2 \\[3ex] (x - 8)^2 + (y - 5)^2 = 81 $
(8.) If a 120° sector of a circle has radius 18 ​cm, what is the perimeter of the​ sector?


$ r = 18\;cm \\[3ex] \theta = 120^\circ \\[3ex] P_{sec} = \dfrac{r(\pi\theta + 360)}{180} \\[5ex] P_{sec} = \dfrac{18(120\pi + 360)}{180} \\[5ex] P_{sec} = \dfrac{120\pi + 360}{10} \\[5ex] P_{sec} = \dfrac{120(\pi + 3)}{10} \\[5ex] P_{sec} = 12(\pi + 3)\;cm $
(9.) NYSED Regents Examination What is an equation of a circle whose center is (1, 4) and diameter is 10?

$ (1)\;\; x^2 - 2x + y^2 - 8y = 8 \;\;\; (3)\;\; x^2 - 2x + y^2 - 8y = 83 \\[3ex] (2)\;\; x^2 + 2x + y^2 + 8y = 8 \;\;\; (4)\;\; x^2 + 2x + y^2 + 8y = 83 \\[3ex] $

$ d = 10 \\[3ex] r = \dfrac{d}{2} = \dfrac{10}{2} = 5 \\[5ex] center = (h, k) = (1, 4) \\[3ex] h = 1 \\[3ex] k = 4 \\[3ex] Standard\;\;Form:\;\; (x - h)^2 + (y - k)^2 = r^2 \\[3ex] \implies \\[3ex] (x - 1)^2 + (y - 4)^2 = 5^2 \\[3ex] [(x - 1)(x - 1)] + [(y - 4)(y - 4)] = 25 \\[3ex] (x^2 - x - x + 1) + (y^2 - 4y - 4y + 16) = 25 \\[3ex] x^2 - 2x + 1 + y^2 - 8y + 16 = 25 \\[3ex] x^2 - 2x + y^2 - 8y = 25 - 1 - 16 \\[3ex] x^2 - 2x + y^2 - 8y = 8 $
(10.) Explain how to adapt the formula for a circle to describe the
(a.) interior of a circle
(b.) exterior of a circle.


$ \underline{Standard\;\;Form\;\;of\;\;the\;\;Equation\;\;of\;\;a\;\;Circle} \\[3ex] (x - h)^2 + (y - k)^2 = r^2 \\[3ex] $ (a.) To adapt the formula for a circle to describe the interior of a circle: rewrite the formula: $ (x - h)^2 + (y - k)^2 \lt r^2 \\[3ex] $ (b.) To adapt the formula for a circle to describe the exterior of a circle: rewrite the formula: $ (x - h)^2 + (y - k)^2 \gt r^2 \\[3ex] $
(11.) WASSCE:FM A circle is drawn through the points (3, 2), (−1, −2) and (5, −4)
Find the:
(a.) coordinates of the centre of the circle.
(b.) radius of the circle.
(c.) equation of the circle.


$ \underline{General\;\;Form\;\;of\;\;the\;\;Equation\;\;of\;\;a\;\;Circle} \\[3ex] x^2 + y^2 + 2gx + 2fy + c = 0 \\[3ex] Point\;1:\;\;(3, 2) \implies x = 3;\;\; y = 2 \\[3ex] 3^2 + 2^2 + 2g(3) + 2f(2) + c = 0 \\[3ex] 9 + 4 + 6g + 4f + c = 0 \\[3ex] 13 + 6g + 4f + c = 0 \\[3ex] 6g + 4f + c = -13 ...eqn.(1) \\[3ex] Point\;2:\;\;(-1, -2) \implies x = -1;\;\; y = -2 \\[3ex] (-1)^2 + (-2)^2 + 2g(-1) + 2f(-2) + c = 0 \\[3ex] 1 + 4 - 2g - 4f + c = 0 \\[3ex] 5 - 2g - 4f + c = 0 \\[3ex] -2g - 4f + c = -5 ...eqn.(2) \\[3ex] Point\;3:\;\;(5, -4) \implies x = 5;\;\; y = -4 \\[3ex] 5^2 + (-4)^2 + 2g(5) + 2f(-4) + c = 0 \\[3ex] 25 + 16 + 10g - 8f + c = 0 \\[3ex] 41 + 10g - 8f + c = 0 \\[3ex] 10g - 8f + c = -41 ...eqn.(3) \\[3ex] eqn.(1) - eqn.(2) \implies \\[3ex] (6g + 4f + c) - (-2g - 4f + c) = -13 - (-5) \\[3ex] 6g + 4f + c + 2g + 4f - c = -13 + 5 \\[3ex] 8g + 8f = -8 \\[3ex] Divide\;\;each\;\;term\;\;by\;\;8 \\[3ex] g + f = -1 ...eqn.(4) \\[3ex] eqn.(1) - eqn.(3) \implies \\[3ex] (6g + 4f + c) - (10g - 8f + c) = -13 - (-41) \\[3ex] 6g + 4f + c - 10g + 8f - c = -13 + 41 \\[3ex] 6g + 4f + c - 10g + 8f - c = 28 \\[3ex] -4g + 12f = 28 \\[3ex] Divide\;\;each\;\;term\;\;by\;\;4 \\[3ex] -g + 3f = 7 ... eqn.(5) \\[3ex] eqn.(4) + eqn.(5) \implies \\[3ex] (g + f) + (-g + 3f) = -1 + 7 \\[3ex] g + f - g + 3f = 6 \\[3ex] 4f = 6 \\[3ex] f = \dfrac{6}{4} \\[5ex] f = \dfrac{3}{2} \\[5ex] eqn.(5) - 3 * eqn.(4) \implies \\[3ex] (-g + 3f) - 3(g + f) = 7 - 3(-1) \\[3ex] -g + 3f - 3g - 3f = 7 + 3 \\[3ex] -4g = 10 \\[3ex] g = \dfrac{10}{-4} \\[5ex] g = -\dfrac{5}{2} \\[5ex] h = -g \\[3ex] h = -1 * -\dfrac{5}{2} \\[5ex] h = \dfrac{5}{2} \\[5ex] k = -f \\[3ex] k = -\dfrac{3}{2} \\[5ex] Center = (h, k) = \left(\dfrac{5}{2}, -\dfrac{3}{2}\right) \\[5ex] (b) \\[3ex] From\;\;eqn.(2) \\[3ex] -2g - 4f + c = -5 ...eqn.(2) \\[3ex] c = -5 + 2g + 4f \\[3ex] c = -5 + 2\left(-\dfrac{5}{2}\right) + 4\left(\dfrac{3}{2}\right) \\[5ex] c = -5 + -5 + 2(3) \\[3ex] c = -5 - 5 + 6 \\[3ex] c = -4 \\[3ex] r^2 = g^2 + f^2 - c \\[3ex] r^2 = \left(-\dfrac{5}{2}\right)^2 + \left(\dfrac{3}{2}\right)^2 + 4 \\[5ex] r^2 = \dfrac{25}{4} + \dfrac{9}{4} + 4 \\[5ex] r^2 = \dfrac{25}{4} + \dfrac{9}{4} + \dfrac{16}{4} \\[5ex] r^2 = \dfrac{25 + 9 + 16}{4} \\[5ex] r^2 = \dfrac{50}{4} \\[5ex] r^2 = \dfrac{25}{2} \\[5ex] r = \sqrt{r^2} \\[3ex] r = \sqrt{\dfrac{25}{2}} \\[5ex] r = 3.535533906\;units \\[5ex] (c) \\[3ex] \underline{General\;\;Form\;\;of\;\;the\;\;Equation\;\;of\;\;a\;\;Circle} \\[3ex] x^2 + y^2 + 2gx + 2fy + c = 0 \\[3ex] x^2 + y^2 + 2 * -\dfrac{5}{2} * x + 2 * \dfrac{3}{2} * y + -4 = 0 \\[5ex] x^2 + y^2 - 5x + 3y - 4 = 0 \\[3ex] \underline{Standard\;\;Form\;\;of\;\;the\;\;Equation\;\;of\;\;a\;\;Circle} \\[3ex] (x - h)^2 + (y - k)^2 = r^2 \\[3ex] \left(x - \dfrac{5}{2}\right)^2 + \left(y - -\dfrac{3}{2}\right)^2 = \dfrac{25}{2} \\[5ex] \left(x - \dfrac{5}{2}\right)^2 + \left(y + \dfrac{3}{2}\right)^2 = \dfrac{25}{2} $
(12.) ACT Which of the following equations is that of a circle that is in the standard (x, y) coordinate plane, has center (1, −4), and has the radius of 5 coordinate units?

$ F.\;\; (x - 1) + (y + 4) = 5 \\[3ex] G.\;\; (x + 1) + (y - 4) = 5 \\[3ex] H.\;\; (x - 1)^2 + (y + 4)^2 = \sqrt{5} \\[3ex] J.\;\; (x - 1)^2 + (y + 4)^2 = 25 \\[3ex] K.\;\; (x + 1)^2 + (y - 4)^2 = 25 \\[3ex] $

The equation of a circle that is in the standard $(x, y)$ coordinate plane with center $(h, k)$ is:

$ (x - h)^2 + (y - k)^2 = r^2 \\[3ex] Center:\;\; (h, k) = (1, -4) \\[3ex] h = 1 \\[3ex] k = -4 \\[3ex] r = 5 \\[3ex] \implies \\[3ex] (x - 1)^2 + (y - -4)^2 = 5^2 \\[3ex] (x - 1)^2 + (y + 4)^2 = 25 $
(13.) MEHA The diagram given below shows a circle.
The coordinates of the end points of the diameter are A(2, 2) and B(5, 4).

Number 13

(a) Calculate the coordinates of the mid-point of AB, the centre of the circle.
(b) Calculate the length of the diameter.


$ \underline{Endpoints} \\[3ex] A(2, 2) \rightarrow x_1 = 2,\;\;\;y_1 = 2 \\[3ex] B(5, 4) \rightarrow x_2 = 5,\;\;\;y_2 = 4 \\[3ex] (a) \\[3ex] Midpoint\;\;of\;\;\overrightarrow{AB} \\[3ex] = \left(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\right) \\[5ex] = \left(\dfrac{2 + 5}{2}, \dfrac{2 + 4}{2}\right) \\[5ex] = \left(\dfrac{7}{2}, \dfrac{6}{2}\right) \\[5ex] = \left(\dfrac{7}{2}, 3\right) \\[5ex] (b) \\[3ex] diameter \\[3ex] = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\[3ex] = \sqrt{(5 - 2)^2 + (4 - 2)^2} \\[3ex] = \sqrt{3^2 + 2^2} \\[3ex] = \sqrt{9 + 4} \\[3ex] = \sqrt{13} $
(14.) Determine the length of a semicircle of a circle whose radius is:
(a.) 4 units
(b.) $\dfrac{1}{4}$ unit

For each of the following​ circumferences, find the radius of the circle.
(c.) C = 4π cm
(d.) C = 20 m

If a circle has the dimensions​ given, determine its circumference.
(e.) 21 ft diameter
(f.) $\dfrac{18}{\pi}$ ft radius


The length of a semicircle is the circumference of the semicircle

$ C = \pi r \\[3ex] (a.) \\[3ex] r = 4\;units \\[3ex] C = \pi * 4 \\[3ex] C = 4\pi\;units \\[5ex] (b.) \\[3ex] r = \dfrac{1}{4}\;unit \\[5ex] C = \pi * \dfrac{1}{4} \\[5ex] C = \dfrac{1}{4}\pi\;unit \\[5ex] $ Now, we move to Circle

$ r = \dfrac{C}{2\pi} \\[5ex] (c.) \\[3ex] C = 4\pi\;cm \\[3ex] r = \dfrac{4\pi}{2\pi} \\[5ex] r = 2\;cm \\[5ex] (d.) \\[3ex] C = 20\;m \\[3ex] r = \dfrac{20}{2\pi} \\[5ex] r = \dfrac{10}{\pi}\;m \\[5ex] $ Still on Circle

$ (e.) \\[3ex] d = 21\;ft \\[3ex] C = \pi d \\[3ex] C = \pi (21) \\[3ex] C = 21\pi \;ft \\[5ex] (f.) \\[3ex] r = \dfrac{18}{\pi}\;ft \\[5ex] C = 2\pi r \\[3ex] C = 2\pi * \dfrac{18}{\pi} \\[5ex] C = 36\;ft $
(15.) (a.) What happens to the circumference of a circle if the length of the radius is quadrupled​?

(b.) What happens to the area of a circle if its diameter is doubled​?

(c.) What happens to the area of a circle if its radius is increased by 20%​?

(d.) What happens to the area of a circle if its circumference is quadrupled​?


(a.) What is the relationship between the circumference of a circle and it's radius?

$ C = 2\pi r \\[3ex] r = 4r...radius\;\;is\;\;quadrupled​ \\[3ex] \implies \\[3ex] C = 2 * \pi * 4r \\[3ex] C = 2 * \pi * r * 4 \\[3ex] C = 4 * 2\pi r \\[3ex] C = 4 * C \\[3ex] C = 4C ...circumference\;\;is\;\;quadrupled​ \\[3ex] $ (b.) What is the relationship between the area of a circle and it's diameter?

$ A = \dfrac{\pi d^2}{4} \\[5ex] d = 2d...diameter\;\;is\;\;doubled​ \\[3ex] \implies \\[3ex] A = \dfrac{\pi * (2d)^2}{4} \\[5ex] A = \dfrac{4\pi d^2}{4} \\[5ex] A = \pi d^2 \\[3ex] A = \dfrac{1}{4} * A \\[5ex] A = \dfrac{1}{4}A ...area\;\;is\;\;four\;\;times\;\;smaller​ \\[3ex] $ (c.) What is the relationship between the area of a circle and it's radius?

$ A = \pi r^2 \\[3ex] r = r + 20\%r...radius\;\;is\;\;increased\;\;by\;\;20\%​ \\[3ex] r = r + 0.2r \\[3ex] r = 1.2r \\[3ex] \implies \\[3ex] A = \pi * (1.2r)^2 \\[3ex] A = \pi * 1.44r^2 \\[3ex] A = 1.44 * \pi r^2 \\[3ex] A = 1.44 * A \\[3ex] A = 1.44A \\[3ex] A = A + 0.44A \\[3ex] A = A + 44\%A...area\;\;is\;\;increased\;\;by\;\;44\% \\[3ex] $ (d.) What is the relationship between the area of a circle and it's circumference?

$ A = \dfrac{C^2}{4\pi} \\[5ex] C = 4C ...circumference\;\;is\;\;quadrupled​ \\[3ex] \implies \\[3ex] A = \dfrac{(4C)^2}{4\pi} \\[5ex] A = \dfrac{16C^2}{4\pi} \\[5ex] A = \dfrac{4C^2}{\pi} \\[5ex] $ What will you do to $\dfrac{C^2}{4\pi}$ to get $\dfrac{4C^2}{\pi}$?
Let us multiply by a variable, p and then solve for p

$ \dfrac{C^2}{4\pi} * p = \dfrac{4C^2}{\pi} \\[5ex] p = \dfrac{4C^2}{\pi} \div \dfrac{C^2}{4\pi} \\[5ex] p = \dfrac{4C^2}{\pi} \times \dfrac{4\pi}{C^2} \\[5ex] p = 16 \\[3ex] \implies \\[3ex] A = 16 * \dfrac{C^2}{4\pi} \\[5ex] A = 16 * A \\[3ex] A = 16A ...area\;\;is\;\;6\;\;times\;\;larger \\[3ex] $
(16.) ACT The entire length of a rope is coiled into 6 circular loops, each with a diameter of 10 inches, as shown below.



Which of the following is closest to the length, in inches, of the rope?

$ A.\;\; 30 \\[3ex] B.\;\; 80 \\[3ex] C.\;\; 95 \\[3ex] D.\;\; 190 \\[3ex] E.\;\; 315 \\[3ex] $

Length of the rope is the circumference

$ \underline{1\;\;circular\;\;loop} \\[3ex] d = 10\;in \\[3ex] C = \pi d \\[3ex] C = \pi (10) \\[3ex] C = 31.41592654 \\[5ex] \underline{Rope = 6\;\;circular\;\;loops} \\[3ex] C = 6(31.41592654) \\[3ex] C = 188.4955592\;inches \\[3ex] $ The closest to the length, in inches, of the rope is 190 inches
(17.)

(18.)


(19.) ACT The track for a model railroad display is set up as 2 circles that are tangent to one another and have diameters of 30 feet and 50 feet, respectively, as shown below.
The engine of the train travels at a constant rate of 75 feet per minute.
To the nearest minute, how many minutes does the engine take to go in a figure 8 pattern around the entire track exactly 1 time?

Number 19

$ F.\;\; 1 \\[3ex] G.\;\; 2 \\[3ex] H.\;\; 3 \\[3ex] J.\;\; 4 \\[3ex] K.\;\; 7 \\[3ex] $

$ C = \pi d \\[3ex] \underline{Small\;\;circle} \\[3ex] d = 30\;feet \\[3ex] C = 30\pi \\[3ex] \underline{Large\;\;circle} \\[3ex] d = 50\;feet \\[3ex] C = 50\pi \\[3ex] \underline{Figure\;\;8\;\;pattern} \\[3ex] C = 30\pi + 50\pi = 80\pi \\[3ex] $
Proportional Reasooning Method to calculate speed
Distance (feet) Time (minute)
$75$ $1$
$80\pi$ $p$

$ \dfrac{x}{1} = \dfrac{80\pi}{75} \\[5ex] x = 80 * \dfrac{22}{7} * \dfrac{1}{75} \\[5ex] x = \dfrac{1760}{525} \\[5ex] x = 3.352380952\; feet \\[3ex] x \approx 3\;minutes $
(20.)





Top




(21.)

(22.)


(23.) ACT A circle with the equation $x^2 + y^2 = 144$ is graphed in the standard (x, y) coordinate plane.
At what points does the circle intersect the x-axis?

$ A.\;\; (-6, 0) \;\;and\;\; (6, 0) \\[3ex] B.\;\; (-12, 0) \;\;and\;\; (12, 0) \\[3ex] C.\;\; (-24, 0) \;\;and\;\; (24, 0) \\[3ex] D.\;\; (-72, 0) \;\;and\;\; (72, 0) \\[3ex] E.\;\; (-144, 0) \;\;and\;\; (144, 0) \\[3ex] $

On the x-axis, all y-values are zero.

$ x^2 + y^2 = 144 \\[3ex] y = 0 \\[3ex] \implies \\[3ex] x^2 + 0^2 = 144 \\[3ex] x^2 = 144 \\[3ex] x = \pm \sqrt{144} \\[3ex] x = \pm 12 \\[3ex] Points = (-12, 0) \;\;and\;\; (12, 0) $
(24.)

(25.)

(26.)

(27.) NYSED Regents Examination Determine and state the coordinates of the center and the length of the radius of the circle whose equation is $x^2 + y^2 - 6x = 56 - 8y$.


$ x^2 + y^2 - 6x = 56 - 8y \\[3ex] x^2 - 6x + y^2 + 8y = 56 \\[3ex] \underline{Completing\;\;the\;\;Square\;\;method} \\[3ex] Coefficient\;\;of\;\;x = -6 \\[3ex] Half\;\;of\;\;it = \dfrac{1}{2} * -6 = -3 \\[5ex] Square\;\;it = (-3)^2 \\[3ex] Coefficient\;\;of\;\;y = 8 \\[3ex] Half\;\;of\;\;it = \dfrac{1}{2} * 8 = 4 \\[5ex] Square\;\;it = 4^2 \\[3ex] \implies \\[3ex] x^2 - 6x + (-3)^2 + y^2 + 8y + 4^2 = 56 + (-3)^2 + 4^2 \\[3ex] (x - 3)^2 + (y + 4)^2 = 56 + 9 + 16 \\[3ex] (x - 3)^2 + (y + 4)^2 = 81 \\[3ex] (x - 3)^2 + (y + 4)^2 = 9^2 \\[3ex] Standard\;\;Form:\;\; (x - h)^2 + (y - k)^2 = r^2 \\[3ex] Compare:\;\;\implies \\[3ex] -h = -3 \\[3ex] h = 3 \\[3ex] -k = 4 \\[3ex] k = -4 \\[3ex] Center = (h, k) = (3, -4) \\[3ex] r^2 = 9^2 \\[3ex] r = 9 \\[3ex] Radius:\;\;r = 9\;units $
(28.)


(29.)

(30.)

(31.) Find the center and the radius of the circle with the equation $x^2 + 6x + y^2 + 10y - 66 = 0$


$ x^2 + 6x + y^2 + 10y - 66 = 0 \\[3ex] x^2 + 6x + y^2 + 10y = 66 \\[3ex] \underline{Completing\;\;the\;\;Square\;\;method} \\[3ex] Coefficient\;\;of\;\;x = 6 \\[3ex] Half\;\;of\;\;it = \dfrac{1}{2} * 6 = 3 \\[5ex] Square\;\;it = 3^2 \\[3ex] Coefficient\;\;of\;\;y = 10 \\[3ex] Half\;\;of\;\;it = \dfrac{1}{2} * 10 = 5 \\[5ex] Square\;\;it = 5^2 \\[3ex] \implies \\[3ex] x^2 + 6x + 3^2 + y^2 + 10y + 5^2 = 66 + 3^2 + 5^2 \\[3ex] (x + 3)^2 + (y + 5)^2 = 66 + 9 + 25 \\[3ex] (x + 3)^2 + (y + 5)^2 = 100 \\[3ex] (x + 3)^2 + (y + 5)^2 = 10^2 \\[3ex] Standard\;\;Form:\;\; (x - h)^2 + (y - k)^2 = r^2 \\[3ex] Compare:\;\;\implies \\[3ex] -h = 3 \\[3ex] h = -3 \\[3ex] -k = 5 \\[3ex] k = -5 \\[3ex] Center = (h, k) = (-3, -5) \\[3ex] r^2 = 10^2 \\[3ex] r = 10 \\[3ex] Radius:\;\;r = 10\;units $
(32.)


(33.)

(34.) ACT Which of the following is an equation of the circle in the standard (x, y) coordinate plane whose center is at (4, −3) and whose radius is 5 coordinate units long?

$ F.\;\; (x - 4)^2 + (y + 3)^2 = 5 \\[3ex] G.\;\; (x - 4)^2 + (y + 3)^2 = 25 \\[3ex] H.\;\; (x - 3)^2 + (y + 4)^2 = 25 \\[3ex] J.\;\; (x + 3)^2 + (y - 4)^2 = 5 \\[3ex] K.\;\; (x + 4)^2 + (y - 3)^2 = 25 \\[3ex] $

The equation of a circle that is in the standard $(x, y)$ coordinate plane with center $(h, k)$ is:

$ (x - h)^2 + (y - k)^2 = r^2 \\[3ex] Center:\;\; (h, k) = (4, -3) \\[3ex] h = 4 \\[3ex] k = -3 \\[3ex] r = 5 \\[3ex] \implies \\[3ex] (x - 4)^2 + (y - -3)^2 = 5^2 \\[3ex] (x - 4)^2 + (y + 3)^2 = 25 $
(35.)

(36.)

(37.)

(38.)

(39.)


(40.)






Top




(41.)


(42.)

(43.)

(44.)

(45.)

(46.)

(47.)

(48.)

(49.)

(50.)